Kamis, 18 Maret 2010

Gerak lurus berubah beraturan (GLBB) diartikan sebagai gerak benda dalam lintasan lurus dengan percepatan tetap. Yang dimaksudkan dengan percepatan tetap adalah perubahan kecepatan gerak benda yang berlangsung secara tetap dari waktu ke waktu. Mula-mula dari keadaan diam, benda mulai bergerak, semakin lama semakin cepat dan kecepatan gerak benda tersebut berubah secara teratur. Perubahan kecepatan bisa berarti tejadi pertambahan kecepatan atau pengurangan kecepatan. Pengurangan kecepatan terjadi apabila benda akan berhenti. dalam hal ini benda mengalami perlambatan tetap. Pada pembahasan ini kita tidak menggunakan istilah perlambatan untuk benda yang mengalami pengurangan kecepatan secara teratur. Kita tetap menamakannya percepatan, hanya nilainya negatif. Jadi perlambatan sama dengan percepatan yang bernilai negatif.

Dalam kehidupan sehari-hari sangat sulit ditemukan benda yang melakukan gerak lurus berubah beraturan, di mana perubahan kecepatannya terjadi secara teratur, baik ketika hendak bergerak dari keadaan diam maupun ketika hendak berhenti. walaupun demikian, banyak situasi praktis terjadi ketika percepatan konstan/tetap atau mendekati konstan, yaitu jika percepatan tidak berubah terhadap waktu (ingat bahwa yang dimaksudkan di sini adalah percepatan tetap, bukan kecepatan tetap. Beda lho….).

Penurunan Rumus Gerak Lurus Berubah Beraturan (GLBB)

Rumus dalam fisika sangat membantu kita dalam menjelaskan konsep fisika secara singkat dan praktis. Jadi cobalah untuk mencintai rumus, he2…. Dalam fisika, anda tidak boleh menghafal rumus. Pahami saja konsepnya, maka anda akan mengetahui dan memahami cara penurunan rumus tersebut. Hafal rumus akan membuat kita cepat lupa dan sulit menyelesaikan soal yang bervariasi….

Sekarang kita coba menurunkan rumus-rumus dalam Gerak Lurus Berubah Beraturan (GLBB). Pahami perlahan-lahan ya….

Pada penjelasan di atas, telah disebutkan bahwa dalam GLBB, percepatan benda tetap atau konstan alias tidak berubah. (kalau di GLB, yang tetap adalah kecepatan). Nah, kalau percepatan benda tersebut tetap sejak awal benda tersebut bergerak, maka kita bisa mengatakan bahwa percepatan sesaat dan percepatan rata-ratanya sama. Bisa ya ? ingat bahwa percepatan benda tersebut tetap setiap saat, dengan demikian percepatan sesaatnya tetap. Percepatan rata-rata sama dengan percepatan sesaat karena baik percepatan awal maupun percepatan akhirnya sama, di mana selisih antara percepatan awal dan akhir sama dengan nol.

Jika sudah paham, sekarang kita mulai menurunkan rumus-rumus alias persamaan-persamaan.

Pada pembahasan mengenai percepatan, kita telah menurunkan persamaan/rumus percepatan rata-rata, di mana

t0 adalah waktu awal ketika benda hendak bergerak, t adalah waktu akhir. Karena pada saat t0t0 (waktu awal) = 0. Nah sekarang persamaan berubah menjadi : benda belum bergerak maka kita bisa mengatakan

Satu masalah umum dalam GLBB adalah menentukan kecepatan sebuah benda pada waktu tertentu, jika diketahui percepatannya (sekali lagi ingat bahwa percepatan tetap). Untuk itu, persamaan percepatan yang kita turunkan di atas dapat digunakan untuk menyatakan persamaan yang menghubungkan kecepatan pada waktu tertentu (vt), kecepatan awal (v0) dan percepatan (a). sekarang kita obok2 persamaan di atas…. Jika dibalik akan menjadi

ini adalah salah satu persamaan penting dalam GLBB, untuk menentukan kecepatan benda pada waktu tertentu apabila percepatannya diketahui. Jangan dihafal, pahami saja cara penurunannya dan rajin latihan soal biar semakin diingat….

Selanjutnya, mari kita kembangkan persamaan di atas (persamaan I GLBB) untuk mencari persamaan yang digunakan untuk menghitung posisi benda setelah waktu t ketika benda tersebut mengalami percepatan tetap.

Pada pembahasan mengenai kecepatan, kita telah menurunkan persamaan kecepataan rata-rata

Karena pada GLBB kecepatan rata-rata bertambah secara beraturan, maka kecepatan rata-rata akan berada di tengah-tengah antara kecepatan awal dan kecepatan akhir;

Persamaan ini berlaku untuk percepatan konstan dan tidak berlaku untuk gerak yang percepatannya tidak konstan. Kita tulis kembali persamaan a :

Persamaan ini digunakan untuk menentukan posisi suatu benda yang bergerak dengan percepatan tetap. Jika benda mulai bergerak pada titik acuan = 0 (atau x0 = 0), maka persamaan II dapat ditulis menjadi

Sekarang kita turunkan persamaan/rumus yang dapat digunakan apabila t (waktu) tidak diketahui.

Sekarang kita subtitusikan persamaan ini dengan nilai t pada persamaan c

Terdapat empat persamaan yang menghubungkan posisi, kecepatan, percepatan dan waktu, jika percepatan (a) konstan, antara lain :

Persamaan di atas tidak berlaku jika percepatan tidak konstan/tetap. Ingat bahwa x menyatakan posisi/kedudukan, bukan jarak dan ( x – x0 ) adalah perpindahan (s)

Latihan Soal

  1. Sebuah mobil sedang bergerak dengan kecepatan 20 m/s ke utara mengalami percepatan tetap 4 m/s2 selama 2,5 sekon. Tentukan kecepatan akhirnya

Panduan jawaban :

Pada soal, yang diketahui adalah kecepatan awal (v0) = 20 m/s, percepatan (a) = 4 m/s dan waktu tempuh (t) = 2,5 sekon. Karena yang diketahui adalah kecepatan awal, percepatan dan waktu tempuh dan yang ditanyakan adalah kecepatan akhir, maka kita menggunakan persamaan/rumus

  1. Sebuah pesawat terbang mulai bergerak dan dipercepat oleh mesinnya 2 m/s2 selama 30,0 s sebelum tinggal landas. Berapa panjang lintasan yang dilalui pesawat selama itu ?

Panduan Jawaban

Yang diketahui adalah percepatan (a) = 2 m/s2 dan waktu tempuh 30,0 s. wah gawat, yang diketahui Cuma dua…. Bingung, tolooooooooooooooooong dong ding dong… pake rumus yang mana, PAKE RUMUS GAWAT DARURAT. Hehe……

Santai saja. Kalau ada soal seperti itu, kamu harus pake logika juga. Ada satu hal yang tersembunyi, yaitu kecepatan awal (v0). Sebelum bergerak, pesawat itu pasti diam. Berarti v0 = 0.

Yang ditanyakan pada soal itu adalah panjang lintasan yang dilalui pesawat. Tulis dulu persamaannya (hal ini membantu kita untuk mengecek apa saja yang dibutuhkan untuk menyelesaikan soal tersebut)

Pada soal di atas, S0 = 0, karena pesawat bergerak dari titik acuan nol. Karena semua telah diketahui maka kita langsung menghitung panjang lintasan yang ditempuh pesawat

Ternyata, panjang lintasan yang ditempuh pesawat adalah 900 m.

  1. sebuah mobil bergerak pada lintasan lurus dengan kecepatan 60 km/jam. karena ada rintangan, sopir menginjak pedal rem sehingga mobil mendapat perlambatan (percepatan yang nilainya negatif) 8 m/s2. berapa jarak yang masih ditempuh mobil setelah pengereman dilakukan ?

Panduan jawaban

Untuk menyelesaikan soal ini dibutuhkan ketelitian dan logika. Perhatikan bahwa yang ditanyakan adalah jarak yang masih ditempuh setelah pengereman dilakukan. Ini berarti setelah pengereman, mobil tersebut berhenti. dengan demikian kecepatan akhir mobil (vt) = 0. karena kita menghitung jarak setelah pengereman, maka kecepatan awal (v0) mobil = 60 km/jam (dikonversi terlebih dahulu menjadi m/s, 60 km/jam = 16,67 m/s ). perlambatan (percepatan yang bernilai negatif) yang dialami mobil = -8 m/s2. karena yang diketahui adalah vt, vo dan a, sedangkan yang ditanyakan adalah s (t tidak diketahui), maka kita menggunakan persamaan

Dengan demikian, jarak yang masih ditempuh mobil setelah pengereman hingga berhenti = 17,36 meter (yang ditanyakan adalah jarak(besaran skalar))

GRAFIK GLBB

Grafik percepatan terhadap waktu

Gerak lurus berubah beraturan adalah gerak lurus dengan percepatan tetap. Oleh karena itu, grafik percepatan terhadap waktu (a-t) berbentuk garis lurus horisontal, yang sejajar dengan sumbuh t. lihat grafik a – t di bawah

Grafik kecepatan terhadap waktu (v-t) untuk Percepatan Positif

Grafik kecepatan terhadap waktu (v-t), dapat dikelompokkan menjadi dua bagian. Pertama, grafiknya berbentuk garis lurus miring ke atas melalui titik acuan O(0,0), seperti pada gambar di bawah ini. Grafik ini berlaku apabila kecepatan awal (v0) = 0, atau dengan kata lain benda bergerak dari keadaan diam.

Kedua, jika kecepatan awal (v0) tidak nol, grafik v-t tetap berbentuk garis lurus miring ke atas, tetapi untuk t = 0, grafik dimulai dari v0. lihat gambar di bawah

Nilai apa yang diwakili oleh garis miring pada grafik tersebut ?

Pada pelajaran matematika SMP, kita sudah belajar mengenai grafik seperti ini. Persamaan matematis y = mx + n menghasilkan grafik y terhadap x ( y sumbu tegak dan x sumbu datar) seperti pada gambar di bawah.

Kemiringan grafik (gradien) yaitu tangen sudut terhadap sumbu x positif sama dengan nilai m dalam persamaan y = n + m x.

Persamaan y = n + mx mirip dengan persamaan kecepatan GLBB v = v0 + at. Berdasarkan kemiripan ini, jika kemiringan grafik y – x sama dengan m, maka kita dapat mengatakan bahwa kemiringan grafik v-t sama dengan a.

Jadi kemiringan pada grafik kecepatan terhadap waktu (v-t) menyatakan nilai percepatan (a).

Grafik kecepatan terhadap waktu (v-t) untuk Perlambatan (Percepatan Negatif)

perlambatan atau percepatan negatif menyebabkan berkurangnya kecepatan. Contoh grafik kecepatan terhadap waktu (v-t) untuk percepatan negatif dapat anda lihat pada gambar di bawah ini.

Grafik Kedudukan Terhadap Waktu (x-t)

Persamaan kedudukan suatu benda pada GLBB telah kita turunkan pada awal pokok bahasan ini, yakni

Kedudukan (x) merupakan fungsi kuadrat dalam t. dengan demikian, grafik x – t berbentuk parabola. Untuk nilai percepatan positif (a > 0), grafik x – t berbentuk parabola terbuka ke atas, sebagaimana tampak pada gambar di bawah ini.

Apabila percepatan bernilai negatif (a <>


pertanyaan piter :

Tolong kasih penjelan untuk soal ini yach,,he,,he,

1. x(t ) = 4t3 + 8t² + 6t – 5
a. Berapa kecepatan rata-rata pada t0.5 dan
t 2.5
b. Berapa kecepatan sesaat pada t 2
b. Berapa percepatannya ratanya,?

Terimakasih,,he,,he,,salam gbu

@ Jawaban :

a) Kecepatan rata-rata pada t = 0,5 dan t = 2,5

t1 = 0,5 dan t2 = 2,5

x1 = 4t3 + 8t² + 6t – 5

= 4(0,5)3 + 8(0,5)² + 6(0,5) – 5

= 4(0,125) + 8(0,25) + 6(0,5) – 5

= 0,5 + 2 + 3 – 5

= 0,5

x2 = 4t3 + 8t² + 6t – 5

= 4(2,5)3 + 8(2,5)² + 6(2,5) – 5

= 4(15,625) + 8(6,25) + 6(2,5) – 5

= 62,5 + 50 + 15 – 5

= 122,5

b) Kecepatan sesaat pada t = 2

v = 3(4t2) + 2(8t) + 6

v = 12t2 + 16t + 6

v = 12 (2)2 + 16(2) + 6

v = 48 + 32 + 6

v = 86

Kecepatan sesaat pada t = 2 adalah 86

c) Berapa percepatan rata-ratanya ?

v1 = 12t12 + 16t1 + 6

v2 = 12t22 + 16t2 + 6

De piter, t1 dan t2 berapa ?

Masukan saja nilai t1 dan t2 ke dalam persamaan v1 dan v2. Setelah itu cari arata-rata.

Gerak lurus berubah beraturan (GLBB) diartikan sebagai gerak benda dalam lintasan lurus dengan percepatan tetap. Yang dimaksudkan dengan percepatan tetap adalah perubahan kecepatan gerak benda yang berlangsung secara tetap dari waktu ke waktu. Mula-mula dari keadaan diam, benda mulai bergerak, semakin lama semakin cepat dan kecepatan gerak benda tersebut berubah secara teratur. Perubahan kecepatan bisa berarti tejadi pertambahan kecepatan atau pengurangan kecepatan. Pengurangan kecepatan terjadi apabila benda akan berhenti. dalam hal ini benda mengalami perlambatan tetap. Pada pembahasan ini kita tidak menggunakan istilah perlambatan untuk benda yang mengalami pengurangan kecepatan secara teratur. Kita tetap menamakannya percepatan, hanya nilainya negatif. Jadi perlambatan sama dengan percepatan yang bernilai negatif.

Dalam kehidupan sehari-hari sangat sulit ditemukan benda yang melakukan gerak lurus berubah beraturan, di mana perubahan kecepatannya terjadi secara teratur, baik ketika hendak bergerak dari keadaan diam maupun ketika hendak berhenti. walaupun demikian, banyak situasi praktis terjadi ketika percepatan konstan/tetap atau mendekati konstan, yaitu jika percepatan tidak berubah terhadap waktu (ingat bahwa yang dimaksudkan di sini adalah percepatan tetap, bukan kecepatan tetap. Beda lho….).

Penurunan Rumus Gerak Lurus Berubah Beraturan (GLBB)

Rumus dalam fisika sangat membantu kita dalam menjelaskan konsep fisika secara singkat dan praktis. Jadi cobalah untuk mencintai rumus, he2…. Dalam fisika, anda tidak boleh menghafal rumus. Pahami saja konsepnya, maka anda akan mengetahui dan memahami cara penurunan rumus tersebut. Hafal rumus akan membuat kita cepat lupa dan sulit menyelesaikan soal yang bervariasi….

Sekarang kita coba menurunkan rumus-rumus dalam Gerak Lurus Berubah Beraturan (GLBB). Pahami perlahan-lahan ya….

Pada penjelasan di atas, telah disebutkan bahwa dalam GLBB, percepatan benda tetap atau konstan alias tidak berubah. (kalau di GLB, yang tetap adalah kecepatan). Nah, kalau percepatan benda tersebut tetap sejak awal benda tersebut bergerak, maka kita bisa mengatakan bahwa percepatan sesaat dan percepatan rata-ratanya sama. Bisa ya ? ingat bahwa percepatan benda tersebut tetap setiap saat, dengan demikian percepatan sesaatnya tetap. Percepatan rata-rata sama dengan percepatan sesaat karena baik percepatan awal maupun percepatan akhirnya sama, di mana selisih antara percepatan awal dan akhir sama dengan nol.

Jika sudah paham, sekarang kita mulai menurunkan rumus-rumus alias persamaan-persamaan.

Pada pembahasan mengenai percepatan, kita telah menurunkan persamaan/rumus percepatan rata-rata, di mana

t0 adalah waktu awal ketika benda hendak bergerak, t adalah waktu akhir. Karena pada saat t0t0 (waktu awal) = 0. Nah sekarang persamaan berubah menjadi : benda belum bergerak maka kita bisa mengatakan

Satu masalah umum dalam GLBB adalah menentukan kecepatan sebuah benda pada waktu tertentu, jika diketahui percepatannya (sekali lagi ingat bahwa percepatan tetap). Untuk itu, persamaan percepatan yang kita turunkan di atas dapat digunakan untuk menyatakan persamaan yang menghubungkan kecepatan pada waktu tertentu (vt), kecepatan awal (v0) dan percepatan (a). sekarang kita obok2 persamaan di atas…. Jika dibalik akan menjadi

ini adalah salah satu persamaan penting dalam GLBB, untuk menentukan kecepatan benda pada waktu tertentu apabila percepatannya diketahui. Jangan dihafal, pahami saja cara penurunannya dan rajin latihan soal biar semakin diingat….

Selanjutnya, mari kita kembangkan persamaan di atas (persamaan I GLBB) untuk mencari persamaan yang digunakan untuk menghitung posisi benda setelah waktu t ketika benda tersebut mengalami percepatan tetap.

Pada pembahasan mengenai kecepatan, kita telah menurunkan persamaan kecepataan rata-rata

Karena pada GLBB kecepatan rata-rata bertambah secara beraturan, maka kecepatan rata-rata akan berada di tengah-tengah antara kecepatan awal dan kecepatan akhir;

Persamaan ini berlaku untuk percepatan konstan dan tidak berlaku untuk gerak yang percepatannya tidak konstan. Kita tulis kembali persamaan a :

Persamaan ini digunakan untuk menentukan posisi suatu benda yang bergerak dengan percepatan tetap. Jika benda mulai bergerak pada titik acuan = 0 (atau x0 = 0), maka persamaan II dapat ditulis menjadi

Sekarang kita turunkan persamaan/rumus yang dapat digunakan apabila t (waktu) tidak diketahui.

Sekarang kita subtitusikan persamaan ini dengan nilai t pada persamaan c

Terdapat empat persamaan yang menghubungkan posisi, kecepatan, percepatan dan waktu, jika percepatan (a) konstan, antara lain :

Persamaan di atas tidak berlaku jika percepatan tidak konstan/tetap. Ingat bahwa x menyatakan posisi/kedudukan, bukan jarak dan ( x – x0 ) adalah perpindahan (s)

Latihan Soal

  1. Sebuah mobil sedang bergerak dengan kecepatan 20 m/s ke utara mengalami percepatan tetap 4 m/s2 selama 2,5 sekon. Tentukan kecepatan akhirnya

Panduan jawaban :

Pada soal, yang diketahui adalah kecepatan awal (v0) = 20 m/s, percepatan (a) = 4 m/s dan waktu tempuh (t) = 2,5 sekon. Karena yang diketahui adalah kecepatan awal, percepatan dan waktu tempuh dan yang ditanyakan adalah kecepatan akhir, maka kita menggunakan persamaan/rumus

  1. Sebuah pesawat terbang mulai bergerak dan dipercepat oleh mesinnya 2 m/s2 selama 30,0 s sebelum tinggal landas. Berapa panjang lintasan yang dilalui pesawat selama itu ?

Panduan Jawaban

Yang diketahui adalah percepatan (a) = 2 m/s2 dan waktu tempuh 30,0 s. wah gawat, yang diketahui Cuma dua…. Bingung, tolooooooooooooooooong dong ding dong… pake rumus yang mana, PAKE RUMUS GAWAT DARURAT. Hehe……

Santai saja. Kalau ada soal seperti itu, kamu harus pake logika juga. Ada satu hal yang tersembunyi, yaitu kecepatan awal (v0). Sebelum bergerak, pesawat itu pasti diam. Berarti v0 = 0.

Yang ditanyakan pada soal itu adalah panjang lintasan yang dilalui pesawat. Tulis dulu persamaannya (hal ini membantu kita untuk mengecek apa saja yang dibutuhkan untuk menyelesaikan soal tersebut)

Pada soal di atas, S0 = 0, karena pesawat bergerak dari titik acuan nol. Karena semua telah diketahui maka kita langsung menghitung panjang lintasan yang ditempuh pesawat

Ternyata, panjang lintasan yang ditempuh pesawat adalah 900 m.

  1. sebuah mobil bergerak pada lintasan lurus dengan kecepatan 60 km/jam. karena ada rintangan, sopir menginjak pedal rem sehingga mobil mendapat perlambatan (percepatan yang nilainya negatif) 8 m/s2. berapa jarak yang masih ditempuh mobil setelah pengereman dilakukan ?

Panduan jawaban

Untuk menyelesaikan soal ini dibutuhkan ketelitian dan logika. Perhatikan bahwa yang ditanyakan adalah jarak yang masih ditempuh setelah pengereman dilakukan. Ini berarti setelah pengereman, mobil tersebut berhenti. dengan demikian kecepatan akhir mobil (vt) = 0. karena kita menghitung jarak setelah pengereman, maka kecepatan awal (v0) mobil = 60 km/jam (dikonversi terlebih dahulu menjadi m/s, 60 km/jam = 16,67 m/s ). perlambatan (percepatan yang bernilai negatif) yang dialami mobil = -8 m/s2. karena yang diketahui adalah vt, vo dan a, sedangkan yang ditanyakan adalah s (t tidak diketahui), maka kita menggunakan persamaan

Dengan demikian, jarak yang masih ditempuh mobil setelah pengereman hingga berhenti = 17,36 meter (yang ditanyakan adalah jarak(besaran skalar))

GRAFIK GLBB

Grafik percepatan terhadap waktu

Gerak lurus berubah beraturan adalah gerak lurus dengan percepatan tetap. Oleh karena itu, grafik percepatan terhadap waktu (a-t) berbentuk garis lurus horisontal, yang sejajar dengan sumbuh t. lihat grafik a – t di bawah

Grafik kecepatan terhadap waktu (v-t) untuk Percepatan Positif

Grafik kecepatan terhadap waktu (v-t), dapat dikelompokkan menjadi dua bagian. Pertama, grafiknya berbentuk garis lurus miring ke atas melalui titik acuan O(0,0), seperti pada gambar di bawah ini. Grafik ini berlaku apabila kecepatan awal (v0) = 0, atau dengan kata lain benda bergerak dari keadaan diam.

Kedua, jika kecepatan awal (v0) tidak nol, grafik v-t tetap berbentuk garis lurus miring ke atas, tetapi untuk t = 0, grafik dimulai dari v0. lihat gambar di bawah

Nilai apa yang diwakili oleh garis miring pada grafik tersebut ?

Pada pelajaran matematika SMP, kita sudah belajar mengenai grafik seperti ini. Persamaan matematis y = mx + n menghasilkan grafik y terhadap x ( y sumbu tegak dan x sumbu datar) seperti pada gambar di bawah.

Kemiringan grafik (gradien) yaitu tangen sudut terhadap sumbu x positif sama dengan nilai m dalam persamaan y = n + m x.

Persamaan y = n + mx mirip dengan persamaan kecepatan GLBB v = v0 + at. Berdasarkan kemiripan ini, jika kemiringan grafik y – x sama dengan m, maka kita dapat mengatakan bahwa kemiringan grafik v-t sama dengan a.

Jadi kemiringan pada grafik kecepatan terhadap waktu (v-t) menyatakan nilai percepatan (a).

Grafik kecepatan terhadap waktu (v-t) untuk Perlambatan (Percepatan Negatif)

perlambatan atau percepatan negatif menyebabkan berkurangnya kecepatan. Contoh grafik kecepatan terhadap waktu (v-t) untuk percepatan negatif dapat anda lihat pada gambar di bawah ini.

Grafik Kedudukan Terhadap Waktu (x-t)

Persamaan kedudukan suatu benda pada GLBB telah kita turunkan pada awal pokok bahasan ini, yakni

Kedudukan (x) merupakan fungsi kuadrat dalam t. dengan demikian, grafik x – t berbentuk parabola. Untuk nilai percepatan positif (a > 0), grafik x – t berbentuk parabola terbuka ke atas, sebagaimana tampak pada gambar di bawah ini.

Apabila percepatan bernilai negatif (a <>


pertanyaan piter :

Tolong kasih penjelan untuk soal ini yach,,he,,he,

1. x(t ) = 4t3 + 8t² + 6t – 5
a. Berapa kecepatan rata-rata pada t0.5 dan
t 2.5
b. Berapa kecepatan sesaat pada t 2
b. Berapa percepatannya ratanya,?

Terimakasih,,he,,he,,salam gbu

@ Jawaban :

a) Kecepatan rata-rata pada t = 0,5 dan t = 2,5

t1 = 0,5 dan t2 = 2,5

x1 = 4t3 + 8t² + 6t – 5

= 4(0,5)3 + 8(0,5)² + 6(0,5) – 5

= 4(0,125) + 8(0,25) + 6(0,5) – 5

= 0,5 + 2 + 3 – 5

= 0,5

x2 = 4t3 + 8t² + 6t – 5

= 4(2,5)3 + 8(2,5)² + 6(2,5) – 5

= 4(15,625) + 8(6,25) + 6(2,5) – 5

= 62,5 + 50 + 15 – 5

= 122,5

b) Kecepatan sesaat pada t = 2

v = 3(4t2) + 2(8t) + 6

v = 12t2 + 16t + 6

v = 12 (2)2 + 16(2) + 6

v = 48 + 32 + 6

v = 86

Kecepatan sesaat pada t = 2 adalah 86

c) Berapa percepatan rata-ratanya ?

v1 = 12t12 + 16t1 + 6

v2 = 12t22 + 16t2 + 6

De piter, t1 dan t2 berapa ?

Masukan saja nilai t1 dan t2 ke dalam persamaan v1 dan v2. Setelah itu cari arata-rata.

Gerak Melingkar Beraturan

Gerak Melingkar Beraturan

Ketika sebuah benda bergerak membentuk suatu lingkaran dengan laju tetap maka benda tersebut dikatakan melakukan Gerak Melingkar Beraturan alias GMB.

Dapatkah kita mengatakan bahwa GMB merupakan gerakan yang memiliki kecepatan linear tetap ? Misalnya sebuah benda melakukan Gerak Melingkar Beraturan, seperti yang tampak pada gambar di bawah. Arah putaran benda searah dengan putaran jarum jam. bagaimana dengan vektor kecepatannya ? seperti yang terlihat pada gambar, arah kecepatan linear/tangensial di titik A, B dan C berbeda. Dengan demikian kecepatan pada GMB selalu berubah (ingat perbedaan antara kelajuan dan kecepatan, kelajuan adalah besaran skalar sedangkan kecepatan adalah besaran vektor yang memiliki besar/nilai dan arah) sehingga kita tidak dapat mengatakan kecepatan linear pada GMB tetap.

Pada gerak melingkar beraturan, besar kecepatan linear v tetap, karenanya besar kecepatan sudut juga tetap.

Jika arah kecepatan linear alias kecepatan tangensial selalu berubah, bagaimana dengan arah kecepatan sudut ? arah kecepatan sudut sama dengan arah putaran partikel, untuk contoh di atas arah kecepatan sudut searah dengan arah putaran jarum jam. Karena besar maupun arah kecepatan sudut tetap maka besaran vektor yang tetap pada GMB adalah kecepatan sudut. Dengan demikian, kita bisa menyatakan bahwa GMB merupakan gerak benda yang memiliki kecepatan sudut tetap.

Pada GMB, kecepatan sudut selalu tetap (baik besar maupun arahnya). Karena kecepatan sudut tetap, maka perubahan kecepatan sudut atau percepatan sudut bernilai nol. Percepatan sudut memiliki hubungan dengan percepatan tangensial, sesuai dengan persamaan

Karena percepatan sudut dalam GMB bernilai nol, maka percepatan linear juga bernilai nol. Jika demikian, apakah tidak ada percepatan dalam Gerak Melingkar Beraturan (GMB) ?

Pada GMB tidak ada komponen percepatan linear terhadap lintasan, karena jika ada maka lajunya akan berubah. Karena percepatan linear alias tangensial memiliki hubungan dengan percepatan sudut, maka percepatan sudut juga tidak ada dalam GMB. Yang ada hanya percepatan yang tegak lurus terhadap lintasan, yang menyebabkan arah kecepatan linear berubah-ubah. Sekarang mari kita tinjau percepatan ini.

PERCEPATAN SENTRIPETAL

Percepatan tangensial didefinisikan sebagai perbandingan perubahan kecepatan dengan selang waktu yang sangat singkat, secara matematis dirumuskan sebagai berikut :


Sekarang kita turunkan persamaan untuk menentukan besar percepatan sentripetal alias percepatan radial (aR)

Kita tulis semua kecepatan dengan v karena pada GMB kecepatan tangensial benda sama (v1 = v2 = v).

Benda yang melakukan gerakan dengan lintasan berbentuk lingkaran dengan jari-jari (r) dan laju tangensial tetap (v) mempunyai percepatan yang arahnya menuju pusat lingkaran dan besarnya adalah :

Berdasarkan persamaan percepatan sentripetal tersebut, terlihat bahwa nilai percepatan sentripetal bergantung pada kecepatan tangensial dan radius/jari-jari lintasan (lingkaran). Dengan demikian, semakin cepat laju gerakan melingkar, semakin cepat terjadi perubahan arah dan semakin besar radius, semakin lambat terjadi perubahan arah.

Arah vektor percepatan sentripetal selalu menuju ke pusat lingkaran, tetapi vektor kecepatan linear menuju arah gerak benda secara alami (lurus), sedangkan arah kecepatan sudut searah dengan putaran benda. Dengan demikian, vektor percepatan sentripetal dan kecepatan tangensial saling tegak lurus atau dengan kata lain pada Gerak Melingkar Beraturan arah percepatan dan kecepatan linear/tangensial tidak sama. Demikian juga arah percepatan sentripetal dan kecepatan sudut tidak sama karena arah percepatan sentripetal selalu menuju ke dalam/pusat lingkaran sedangkan arah kecepatan sudut sesuai dengan arah putaran benda (untuk kasus di atas searah dengan putaran jarum jam).

Kita dapat menyimpulkan bahwa dalam Gerak Melingkar Beraturan :

  1. besar kecepatan linear/kecepatan tangensial adalah tetap, tetapi arah kecepatan linear selalu berubah setiap saat
  2. kecepatan sudut (baik besar maupun arah) selalu tetap setiap saat
  3. percepatan sudut maupun percepatan tangensial bernilai nol
  4. dalam GMB hanya ada percepatan sentripetal

PERIODE DAN FREKUENSI

Gerak melingkar sering dijelaskan dalam frekuensi (f) sebagai jumlah putaran per detik. Periode (T) dari benda yang melakukan gerakan melingkar adalah waktu yang diperlukan untuk menyelesaikan satu putaran. Hubungan antara frekuensi dengan periode dinyatakan dengan persamaan di bawah ini :

Dalam satu putaran, benda menempuh lintasan linear sepanjang satu keliling lingkaran (2 phi r), di mana r merupakan jarak tepi lingkaran dengan pusat lingkaran. Kecepatan linear merupakan perbandingan antara panjang lintasan linear yang ditempuh benda dengan selang waktu tempuh. Secara matematis dirumuskan sebagai berikut :

Sekarang kita tulis kembali persamaan Gerak Melingkar Beraturan (GMB) yang telah kita turunkan di atas ke dalam tabel di bawah ini :

Persamaan fungsi Gerak Melingkar Beraturan (GMB)

Pada Gerak Melingkar Beraturan, kecepatan sudut selalu tetap (baik besar maupun arahnya), di mana kecepatan sudut awal sama dengan kecepatan sudut akhir. Karena selalu sama, maka kecepatan sudut sesaat sama dengan kecepatan sudut rata-rata.